Abk�rzung zur Hauptnavigation Abk�rzung zu den Newsmeldungen Abk�rzung zu den Topstories  
English Version English Version
  MedUni Wien  trenner  Intranet  trenner  MedUni Wien - Shop  trenner  Universitätsbibliothek  trenner  Universitätsklinikum AKH Wien  trenner
 
Med_Physik.png
 
 
 
Hauptnavigation
  • Home
  • Allgemeine Informationen
    • Team und Kontakt
    • Jobs
    • Projekte für Studierende
    • Geschichtliches
    • Archiv vor 2017
  • Services
  • Studium & Lehre
  • Wissenschaft & Forschung
    • Biophotonics
    • Cardiovascular Engineering
    • Conventional Imaging
    • Magnetic Resonance
    • Medical Additive Manufacturing
    • Neuroprosthetics & Rehabilitation Engineering
    • Quantitative Imaging and Medical Physics
    • Research Partners
 
Allgemeine Informationen / Team und Kontakt /
 
Subnavigation
  • Team und Kontakt
    • Leitung
    • Administration & Support
    • Forschungsgruppen
    • Forschende
    • Adjunct ProfessorInnen
  • Jobs
  • Projekte für Studierende
  • Geschichtliches
  • Archiv vor 2017


Inhaltsbereich
Martin Stoiber
Oberrat Dipl.-Ing. (FH) Martin StoiberPlastics Laboratory & Additive Manufacturing

Center for Medical Physics and Biomedical Engineering
Position: Technical Staff
T +43 1 40400 61440
martin.stoiber@meduniwien.ac.at

Further Information

Keywords

Artificial Organs; Biomechanical Phenomena; Manufactured Materials; Materials Testing; Plastics

Research group(s)

  • Additve Manufacturing for Medical Research - M3dRES
    Research Area: The M3dRES project aims at establishing a unique infrastructure devoted to 3d-printing for medical research in a strongly interdisciplinary environment.
    Members:
    Christian Grasl
    Martin Stoiber
    Francesco Moscato
    Gunpreet Oberoi
    Erik Kornfellner
    Ewald Unger
  • Cardiovascular Dynamics and Artificial Organs
    Research Area: The Working Group deals with investigation, development and simulation of cardiovascular devices and hemodynamics for diagnostic and therapeutic tools.
    Members:
    Christian Grasl
    Martin Stoiber
    Christoph Gross
    Max Haberbusch
    Bettina Kronsteiner
    Francesco Moscato
    Thomas Schlöglhofer
    Martin Maw
  • Ludwig Boltzmann Institute for Cardiovascular Research
    Head: Johann Wojta
    Research Area: The Ludwig-Boltzmann-Cluster for Cardiovascular Research focuses on interdisciplinary research of therapies for cardiovascular diseases.
    Members:
    Christian Grasl
    Martin Stoiber
    Christoph Gross
    Francesco Moscato
    Philipp Aigner
    Thomas Schlöglhofer

Research interests

Mechanical characterization of small blood vessels and vascular grafts

Small diameter blood vessel substitutes require special materials, structures and mechanical behavior to ensure long term functionality. Our group is developing vascular grafts using the electrospinning process which creates constructs out of nanostructured polymer fibers, thus mimicking the structure of the cell surrounding. The mechanical properties can be influenced by electrospinning parameters, fiber orientations and materials. The biomechanical characterization of blood vessels in vitro is not only important as basis for design and production of blood vessel substitutes but also for the investigation of various vascular diseases and for the development of mathematical models.

Techniques, methods & infrastructure

Mechanical Characterization of Soft Tissue and Vascular Implants

Testing procedures to analyze mechanical behavior of tissue, vasculature and prostheses are available in our lab. Two measurement systems cover a wide measurement range. A BOSE ElectroForce testbench system with a 200N Linear motor (Bose Corp. MN, USA) is used for lower forces (0.01 N – 200 N) and high dynamic measurements (up to 100 Hz). A conventional tensile testing apparatus (Beta 10-2.5, Messphysik GmbH, Fürstenfeld, Austria) with contactless strain measurement is used for larger specimen and forces.

Selected publications

  1. Stoiber, M. et al., 2015. A method for mechanical characterization of small blood vessels and vascular grafts. Experimental Mechanics, 55(8), pp.1591-1595. Available at: http://dx.doi.org/10.1007/s11340-015-0053-x.
  2. Weiser, C. et al., 2017. Feasibility of profound hypothermia as part of extracorporeal life support in a pig model. The Journal of Thoracic and Cardiovascular Surgery, 154(3), pp.867-874. Available at: http://dx.doi.org/10.1016/j.jtcvs.2017.03.055.
  3. Stoiber, M. et al., 2013. An Alternative Method to Create Highly Transparent Hollow Models for Flow Visualization. The International Journal of Artificial Organs, 36(2), pp.131-134. Available at: http://dx.doi.org/10.5301/ijao.5000171.
  4. Juraszek, A. et al., 2014. The influence of bicuspid aortic valves on the dynamic pressure distribution in the ascending aorta: a porcine ex vivo model. European Journal of Cardio-Thoracic Surgery, 46(3), pp.349-355. Available at: http://dx.doi.org/10.1093/ejcts/ezu055.
  5. Stoiber, M. et al., 2009. A Passive Magnetically and Hydrodynamically Suspended Rotary Blood Pump. Artificial Organs, 33(3), pp.250-257. Available at: http://dx.doi.org/10.1111/j.1525-1594.2009.00715.x.
 
Drucken
 
 
© MedUni Wien | Impressum | Nutzungsbedingungen | Datenschutzerklärung | Barrierefreiheit |Kontakt