Abk�rzung zur Hauptnavigation Abk�rzung zu den Newsmeldungen Abk�rzung zu den Topstories  
English Version English Version
  MedUni Wien  trenner  Intranet  trenner  MedUni Wien - Shop  trenner  Universitätsbibliothek  trenner  Universitätsklinikum AKH Wien  trenner
 
Med_Physik.png
 
 
 
Hauptnavigation
  • Home
  • Allgemeine Informationen
    • Team und Kontakt
    • Jobs
    • Projekte für Studierende
    • Geschichtliches
    • Archiv vor 2017
  • Services
  • Studium & Lehre
  • Wissenschaft & Forschung
    • Biophotonics
    • Cardiovascular Engineering
    • Conventional Imaging
    • Magnetic Resonance
    • Medical Additive Manufacturing
    • Neuroprosthetics & Rehabilitation Engineering
    • Quantitative Imaging and Medical Physics
    • Research Partners
 
Allgemeine Informationen / Team und Kontakt /
 
Subnavigation
  • Team und Kontakt
    • Leitung
    • Administration & Support
    • Forschungsgruppen
    • Team
    • Adjunct ProfessorInnen
  • Jobs
  • Projekte für Studierende
  • Geschichtliches
  • Archiv vor 2017


Inhaltsbereich
Laszlo Papp
Laszlo Papp

Center for Medical Physics and Biomedical Engineering
Position: Research Associate (Postdoc)
ORCID: 0000-0002-9049-9989
T +43 1 40400 72350
laszlo.papp@meduniwien.ac.at

  • Download Curriculum Vitae

Keywords

Artificial Intelligence; Data Mining; Image Interpretation, Computer-Assisted; Image Processing, Computer-Assisted

Research group(s)

  • QIMP group
    Head: Thomas Beyer, PhD, MBA
    Research Area: Quantitative, combined imaging (PET/CT, PET/MR, SPECT/CT); Supporting clinical adoption of fully integrated PET/MRI; Image-based phenotyping and texture analysis
    Members:
    Lalith Kumar Shiyam Sundar
    July Alejandra Gonzalez Valladares
    Alexander Berger
    Hunor Kertesz
    Denis Krajnc
    Thomas Beyer, PhD, MBA
    David Iommi
    Ivo Rausch
    Laszlo Papp
    Sasan Moradi

Research interests

Quantum computing, machine learning, image processing, personalized medicine, tumour characterization

Techniques, methods & infrastructure

Techniques, Methods:

  • In vivo feature engineering
  • Radiomics, holomics
  • Ensemble learning
  • Quantum machine learning

Infrastructure:

  • ITSC high-performance computing (64 CPU cores)
  • Quantum simulation HPC (256 CPU cores, 7 TByre RAM)

Grants

  • Foundations of a Quantum Computational Lab at the CMPBME (2019)
    Source of Funding: Medical University of Vienna, Focus XL Grant Scheme
    Principal Investigator

Selected publications

  1. Papp, L. et al., 2020. Supervised machine learning enables non-invasive lesion characterization in primary prostate cancer with [68Ga]Ga-PSMA-11 PET/MRI. European Journal of Nuclear Medicine and Molecular Imaging. Available at: http://dx.doi.org/10.1007/s00259-020-05140-y.
  2. Papp, L. et al., 2018. Optimized Feature Extraction for Radiomics Analysis of 18F-FDG PET Imaging. Journal of Nuclear Medicine, 60(6), pp.864–872. Available at: http://dx.doi.org/10.2967/jnumed.118.217612.
  3. Papp, L. et al., 2017. Glioma Survival Prediction with Combined Analysis of In Vivo11C-MET PET Features, Ex Vivo Features, and Patient Features by Supervised Machine Learning. Journal of Nuclear Medicine, 59(6), pp.892–899. Available at: http://dx.doi.org/10.2967/jnumed.117.202267.
  4. Papp, L. et al., 2018. Personalizing Medicine Through Hybrid Imaging and Medical Big Data Analysis. Frontiers in Physics, 6. Available at: http://dx.doi.org/10.3389/fphy.2018.00051.
 
Drucken
 
 
© MedUni Wien | Impressum | Nutzungsbedingungen | Datenschutzerklärung | Barrierefreiheit |Kontakt