Acoustic characterization of a highly sensitive broadband all-optical ultrasound sensor without any deformable parts

S. Preißera,b, W. Rohringera,b, M. Liua, Z. Chena, B. Hermanna, C. Kollmanna, H. Sattmanna, B. Zabihiana, S. Zotterb, B. Fischerb, W. Drexlera

aCenter for Medical Physics and Biomedical Engineering, Medical University Vienna (Austria)
bXARION Laser Acoustics GmbH, Vienna (Austria)

Akinetic Sensor
- Fabry-Pérot cavity + tunable narrow-linewidth laser
- Signal: transmitted light intensity
- Detection: with photodiode
- No moveable membrane

Characterization Setups
- Substitution method
- Signal: transmitted
- Frequency response is uniform over the range of
- Diameter of detection laser inside the sensor is affecting

SNR Comparison
- Photoacoustic waves generated by laser irradiation of PTFE-Tubings filled with India-ink water mixture ($\mu_\text{a}=0.2\text{mm}^{-1}$)
- Comparison of XARION sensor and three different Panametrics ultrasound transducers
- The noise equivalent pressure (NEP) was measured using a calibrated hydrophone

Signal-Noise Comparison
- Frequency range of the source = 0.5 MHz – 3.5 MHz (-6 dB)
- The SNR of the XARION sensor near the piezo-based transducers
- Light absorption inside the XARION sensor << compared to piezo-ceramic sensors

NEP Comparison
- Measured NEP of XARION sensor vs. theoretical limits for ideal PZT-based piezo transducers
- NEP of the XARION sensor was determined by the use of a calibrated hydrophone

Conclusions
- A rigid akinetic wideband optical hydrophone has been developed and characterized
- Directivity measurements were performed and show anisotropy as expected from the cylindrical detection volume
- Signal-to-noise and NEP-comparison shows an unprecedented size-to-NEP ratio (NEP: 2 Pa at 20 MHz bandwidth)
- Frequency response is uniform over the range of 0.5 – 22.5 MHz and the signal output shows a excellent linearity (Dynamic range: 137 dB)